Bio-Printing of Materials for Bone Tissue Engineering

Author:

Jafari Taha1,Naghib Seyed Morteza1,Mozafari M.R.2

Affiliation:

1. Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran

2. Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia

Abstract

The complicated internal mechanical and structural qualities of normal bone tissue still prevent the development of effective therapeutic procedures for major bone lesions. It is still difficult to use tissue engineering to return damaged bones back to how they were originally intended. Due to recent advances in 3D printing, together with the introduction of new materials and technological assistance, the basis for BTE has been established. Biological 3D biomaterials have cells inside them, which allows for the creation of structures that mimic real tissues. Microextrusion, inkjet, and laser-assisted bioprinting are the three primary methods used in 3D bioprinting manufacturing. Hydrogels packed with cells, growth hormones, and bioactive ceramics are among the bioinks utilized in bone bioprinting. With the use of magnetic resonance imaging or computed tomography scanning, 3D printing offers substantial benefits for tailored treatment by enabling the creation of scaffolds with the right structural qualities, form, and dimensions. Three-dimensional (3D) bioprinting is a cutting-edge technique that has been utilized recently to create multicellular, biomimetic tissues with layers upon layers of intricate tissue microenvironment printing. We approached the use of hydrogels with great strength in 3D printing for BTE with an emphasis on first providing a thorough study about the development of 3D printing, printing techniques, and ink selection in this review. A brief prediction on how 3D printing would advance in the future was made.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3