Abstract
Sustainable development is an inevitable choice for the development of human society, and energy is closely related to sustainable development. Improving energy structure, increasing energy efficiency, and vigorously developing renewable energy are of great significance to the sustainable development of rural areas. Moreover, the establishment of a distributed multi-energy complementary system (MECS) using abundant renewable energy such as wind, solar, and biomass energy is an effective way to solve the rapid growth of rural power demand, weak rural power grids, and rural environmental pollution. This paper proposes a new type of Wind–Solar–Biomass–Storage MECS composed of wind power generation (WPG), photovoltaic power generation (PVG), biogas power generation (BPG) and energy storage system (ESS) and establishes a MECS optimization operation model with the goal of maximizing daily operating economic benefits, considering the characteristics of each power generation system and power demand characteristics. By using the multi-population genetic algorithm (MPGA), the simulation experiments of the MECS operation under four typical weather scenarios are carried out. The results show that the MECS can operate stably in different scenarios and achieve the goal of maximizing economic benefits, which verifies the feasibility of the MECS model. In addition, the simulation results are compared with the standard genetic algorithm (SGA), which shows the effectiveness of the optimization method. This paper takes Chinese rural areas as an example for research. The proposed MECS and optimal operation model are also applicable to developing countries with a high proportion of the rural population.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献