Abstract
Climate change can affect freshwater communities superimposing on other major stressors, such as water exploitation, with effects still poorly understood. The exacerbation of naturally-occurring periods of low flows has been reported as a major hydrological effect of water diversions, with severe impacts on river benthic macroinvertebrate communities. This study aimed at assessing long-term modifications of low-flow events in a large lowland Italian river possibly associated to climate change and the effects of these events, intensified by water withdrawals, on benthic macroinvertebrates. A 77-year dataset on daily discharge was thus analyzed through Mann-Kendall test and Sen’s method to investigate modifications of the main hydrological parameters. Moreover, macroinvertebrates were collected during the low-flow periods that occurred from 2010 to 2015 at three sites downstream of water withdrawals, representing three different conditions of hydrological impairment. After assessing possible differences in taxonomical and functional composition between sites and impairment conditions, redundancy analysis and ordinary least squares regression were performed to link benthos metrics to environmental (hydrological and physico-chemical) characteristics. An increase in the duration of the low-flow periods and reduced summer flows were detected on the long term, and the magnitude of low flows was significantly altered by water withdrawals. These hydrological features shaped both structural and functional characteristics of benthic assemblages, highlighting the need for a more environmentally-sustainable water resource management in the current context of climate change.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献