Towards ecological flows: status of the benthic macroinvertebrate community during summer low-flow periods in a regulated lowland river

Author:

Quadroni SilviaORCID,Laini AlexORCID,Salmaso Francesca,Servanzi Livia,Gentili Gaetano,Zaccara SerenaORCID,Espa Paolo,Crosa GiuseppeORCID

Abstract

Climate change along with the increasing exploitation of water resources exacerbates low-flow periods, causing detrimental effects on riverine communities. The main mitigation measure currently adopted to counteract hydrological alterations induced by off-stream diversion is the release of minimum flows (MFs), even if within the European Union Water Framework Directive an upgrade towards ecological flows is urgently required to achieve good ecological status (GES). In this study, we investigated the temporal evolution of the benthic macroinvertebrate community in an Italian-regulated lowland river (Ticino River) to clarify the ecological effects of summer low flows, and we evaluated the current MFs in the perspective of meeting GES standard. Biomonitoring was carried out for four consecutive years (2019-2022), in a river site immediately below a large off-stream diversion. The four study years were characterized by different streamflow patterns, thus allowing us to compare the temporal trajectories of the community under different flow conditions. Moreover, the interruption of the low-flow periods due to overflow spilled by the upstream dam gave us the opportunity to assess the effects of experimental flow peaks. Contrary to the expectation, the macroinvertebrate assemblage kept almost unvaried across the years, showing great resistance and resilience to hydrological changes. Even in extraordinarily dry 2022, the community composition varied only slightly, with a reduction of mayflies and an increase of mollusks. However, a deterioration of the ecological status below GES standard was recorded that summer, indicating the need for an upgrading of the current MFs. This upgrade would include experimental flow peaks in critical periods, which act as intermediate disturbances, enhancing community richness, diversity, and overall quality, as well as compliance with a threshold of an index specifically developed for the hydrological pressure.

Publisher

PAGEPress Publications

Subject

Water Science and Technology,Ecology,Aquatic Science

Reference48 articles.

1. Acreman M, 2016. Environmental flows-basics for novices. WIREs Water 3:622-628.

2. Amraoui N, Sbai MA, Stollsteiner P, 2019. Assessment of climate change impacts on water resources in the Somme River basin (France). Water Resour Manag 33:2073-2092.

3. Buffagni A, Erba S, 2007a. Intercalibrazione e classificazione di qualità ecologica dei fiumi per la 2000/60/EC (WFD): l’indice STAR-ICMi. IRSA-CNR Notiziario dei metodi analitici 1:94-100.

4. Buffagni A, Erba S, 2007b. Macroinvertebrati acquatici e Direttiva 2000/60/EC (WFD) – Parte A. Metodo di campionamento per i fiumi guadabili. IRSA-CNR Notiziario dei metodi analitici 1:2-27.

5. Bunn SE, Arthington AH, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30:492-507.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3