Reconstruction Method of 3D Turbulent Flames by Background-Oriented Schlieren Tomography and Analysis of Time Asynchrony

Author:

Gao Peng12ORCID,Zhang Yue12,Yu Xiaoxiao12,Dong Shikui12ORCID,Chen Qixiang12,Yuan Yuan12

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China

2. Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China

Abstract

Background-oriented Schlieren tomography (BOST) is widely used for 3D reconstruction of turbulent flames. Two major concerns are associated with 3D reconstruction. One is the time asynchrony within the data acquisition of the high-speed camera. The other is that the ray tracing process requires significant computational consumption. This study proposes a ray tracing optimization method based on the k-d tree. The study results show that the average search nodes for each ray are only 0.018% of 3D flame with 3.07 million grid nodes. In addition, a parameter estimation method of the unknown azimuth power spectrum function is proposed. First, a typical Sandia turbulent jet diffusion flame dataset was built and validated accordingly, with experiments. The algorithm’s applicability to the 3D reconstruction of temperature and density fields is discussed on this basis. The root-mean-square error (RMSE) of the cross-section density for 3D reconstruction is below 0.1 kg/m3. In addition, the RMSE of the cross-section temperature is below 270 K. Finally, an uncertainty analysis of the flame reconstruction based on a physical model is performed by optimizing the ray tracing method. For the time asynchronous variance of 1 ms, the density uncertainty of the 3D reconstruction is below 1.6 × 10−2 kg/m3, and the temperature uncertainty is below 70 K. The method can provide an essential basis for the design of BOST systems and the 3D reconstruction of turbulent flames.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3