Experimental and Finite Element Analysis of the Tensile Behavior of Architectured Cu-Al Composite Wires

Author:

Dashti AlirezaORCID,Keller Clément,Vieille Benoit,Guillet Alain,Bouvet Christophe

Abstract

The present study investigates, experimentally and numerically, the tensile behavior of copper-clad aluminum composite wires. Two fiber-matrix configurations, the conventional Al-core/Cu-case and a so-called architectured wire with a continuous copper network across the cross-section, were considered. Two different fiber arrangements with 61 or 22 aluminum fibers were employed for the architectured samples. Experimentally, tensile tests on the two types of composites show that the flow stress of architectured configurations is markedly higher than that of the linear rule of mixtures’ prediction. Transverse stress components and processing-induced residual stresses are then studied via numerical simulations to assess their potential effect on this enhanced strength. A set of elastic-domain and elastoplastic simulations were performed to account for the influence of Young’s modulus and volume fraction of each phase on the magnitude of transverse stresses and how theses stresses contribute to the axial stress-strain behavior. Besides, residual stress fields of different magnitude with literature-based distributions expected for cold-drawn wires were defined. The findings suggest that the improved yield strength of architectured Cu-Al wires cannot be attributed to the weak transverse stresses developed during tensile testing, while there are compelling implications regarding the strengthening effect originating from the residual stress profile. Finally, the results are discussed and concluded with a focus on the role of architecture and residual stresses.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3