Surface Roughness Analysis and Prediction with an Artificial Neural Network Model for Dry Milling of Co–Cr Biomedical Alloys

Author:

Dijmărescu Manuela-RoxanaORCID,Abaza Bogdan FelicianORCID,Voiculescu IoneliaORCID,Dijmărescu Maria-Cristina,Ciocan Ion

Abstract

The aim of this paper is to conduct an experimental study in order to obtain a roughness (Ra) prediction model for dry end-milling (with an AlTiCrSiN PVD-coated tool) of the Co–28Cr–6Mo and Co–20Cr–15W–10Ni biomedical alloys, a model that can contribute to more quickly obtaining the desired surface quality and shortening the manufacturing process time. An experimental plan based on the central composite design method was adopted to determine the influence of the axial depth of cut, feed per tooth and cutting speed process parameters (input variables) on the Ra surface roughness (response variable) which was recorded after machining for both alloys. To develop the prediction models, statistical techniques were used first and three prediction equations were obtained for each alloy, the best results being achieved using response surface methodology. However, for obtaining a higher accuracy of prediction, ANN models were developed with the help of an application made in LabView for roughness (Ra) prediction. The primary results of this research consist of the Co–28Cr–6Mo and Co–20Cr–15W–10Ni prediction models and the developed application. The modeling results show that the ANN model can predict the surface roughness with high accuracy for the considered Co–Cr alloys.

Publisher

MDPI AG

Subject

General Materials Science

Reference64 articles.

1. Metallic implant biomaterials;Chen;Mater. Sci. Eng. R Rep.,2015

2. Biomaterials—An Introduction;Park,2007

3. The Role of Surface Modification on Bacterial Adhesion of Bio-Implant Materials: Machining, Characterization, and Applications;Santhosh,2021

4. CoCrMo alloy for biomedical applications;Milošev,2012

5. Superalloys for gas turbine engines;Mouritz,2012

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3