Polarized and Evanescent Guided Wave Surface-Enhanced Raman Spectroscopy of Ligand Interactions on a Plasmonic Nanoparticle Optical Chemical Bench

Author:

Chen Xining1ORCID,Andrews Mark P.1ORCID

Affiliation:

1. Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada

Abstract

This study examined applications of polarized evanescent guided wave surface-enhanced Raman spectroscopy to determine the binding and orientation of small molecules and ligand-modified nanoparticles, and the relevance of this technique to lab-on-a-chip, surface plasmon polariton and other types of field enhancement techniques relevant to Raman biosensing. A simplified tutorial on guided-wave Raman spectroscopy is provided that introduces the notion of plasmonic nanoparticle field enhancements to magnify the otherwise weak TE- and TM-polarized evanescent fields for Raman scattering on a simple plasmonic nanoparticle slab waveguide substrate. The waveguide construct is called an optical chemical bench (OCB) to emphasize its adaptability to different kinds of surface chemistries that can be envisaged to prepare optical biosensors. The OCB forms a complete spectroscopy platform when integrated into a custom-built Raman spectrograph. Plasmonic enhancement of the evanescent field is achieved by attaching porous carpets of Au@Ag core shell nanoparticles to the surface of a multi-mode glass waveguide substrate. We calibrated the OCB by establishing the dependence of SER spectra of adsorbed 4-mercaptopyridine and 4-aminobenzoic acid on the TE/TM polarization state of the evanescent field. We contrasted the OCB construct with more elaborate photonic chip devices that also benefit from enhanced evanescent fields, but without the use of plasmonics. We assemble hierarchies of matter to show that the OCB can resolve the binding of Fe2+ ions from water at the nanoscale interface of the OCB by following the changes in the SER spectra of 4MPy as it coordinates the cation. A brief introduction to magnetoplasmonics sets the stage for a study that resolves the 4ABA ligand interface between guest magnetite nanoparticles adsorbed onto host plasmonic Au@Ag nanoparticles bound to the OCB. In some cases, the evanescent wave TM polarization was strongly attenuated, most likely due to damping by inertial charge carriers that favor optical loss for this polarization state in the presence of dense assemblies of plasmonic nanoparticles. The OCB offers an approach that provides vibrational and orientational information for (bio)sensing at interfaces that may supplement the information content of evanescent wave methods that rely on perturbations in the refractive index in the region of the evanescent wave.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3