CO2 Emission Optimization of Concrete-Filled Steel Tubular Rectangular Stub Columns Using Metaheuristic Algorithms

Author:

Cakiroglu CelalORCID,Islam Kamrul,Bekdaş GebrailORCID,Kim SanghunORCID,Geem Zong WooORCID

Abstract

Concrete-filled steel tubular (CFST) columns have been assiduously investigated experimentally and numerically due to the superior structural performance they exhibit. To obtain the best possible performance from CFST columns while reducing the environmental impact, the use of optimization algorithms is indispensable. Metaheuristic optimization techniques provide the designers of CFST members with a very efficient set of tools to obtain design combinations that perform well under external loading and have a low carbon footprint at the same time. That is why metaheuristic algorithms are more applicable in civil engineering due to their high efficiency. A large number of formulas for the prediction of the axial ultimate load-carrying capacity Nu of CFST columns are available in design codes. However, a limitation of the usage of these design formulas is that most of these formulas are only applicable for narrow ranges of design variables. In this study a newly developed set of equations with a wide range of applicability that calculates Nu in case of rectangular cross-sections is applied. In order to optimize the cross-sectional dimensions, two different metaheuristic algorithms are used, and their performances are compared. The reduction in CO2 emission is demonstrated as a function of cross-sectional dimensions while considering certain structural performance requirements. The outcome of the more recently developed social spider algorithm is compared to the outcome of the well-established harmony search technique. The objective of optimization was to minimize CO2 emissions associated with the fabrication of CFST stub columns. The effects of varying the wall thickness as well as the concrete compressive strength on CO2 emissions are visualized by using two different optimization techniques.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3