CO2 and Cost Optimization of Reinforced Concrete Cantilever Soldier Piles: A Parametric Study with Harmony Search Algorithm

Author:

Arama Zülal Akbay,Kayabekir Aylin Ece,Bekdaş GebrailORCID,Geem Zong WooORCID

Abstract

This paper presents the parametric modelling process of cantilever soldier pile walls based on CO2 and cost optimization with the Harmony Search Algorithm. The study attempted to fulfil the geotechnical and structural design requirements and sustainable usage necessities simultaneously. The variants of the optimum design process are selected as the cross-sectional characteristics of cantilever soldier piles such as the length and diameter of the pile, and the other design variables are the reinforcement detailing of the pile such as the diameter and the number of reinforcement bars. Besides the volume of the concrete, the unit prices of both reinforcement and concrete are evaluated as another part of the variants. The shear and flexural strength necessities, minimum cross section of the reinforcing bars and factor of safety values are identified as the constraints of the optimization. Different objective functions are defined to provide the minimum cost, the minimum CO2 emission and the integrated multi-objective evaluation of cost and CO2. In addition, the type of steel and concrete reinforcement on the optimum CO2 emission is investigated with the use of different material emission values that are selected from current literature studies. Consequently, the results of the optimization analyses are interrogated to investigate if the attainment of both minimum CO2 and cost balance can be achieved.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference53 articles.

1. Applied Analyses in Geotechnics;Azizi,1999

2. Principles of Foundation Engineering;Das,2007

3. Stability analysis of cantilever double soldier-piled walls in sandy soil

4. Earth Retention Systems Handbook;Macnab,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3