An Energy-Fraud Detection-System Capable of Distinguishing Frauds from Other Energy Flow Anomalies in an Urban Environment

Author:

Calamaro Netzah,Beck YuvalORCID,Ben Melech Ran,Shmilovitz Doron

Abstract

Energy fraud detection bears significantly on urban ecology. Reduced losses and power consumption would affect carbon dioxide emissions and reduce thermal pollution. Fraud detection also provides another layer of urban socio-economic correlation heatmapping and improves city energy distribution. This paper describes a novel algorithm of energy fraud detection, utilizing energy and energy consumption specialized knowledge poured into AI front-end. The proposed algorithm improves fraud detection’s accuracy and reduces the false positive rate, as well as reducing the preliminary required training dataset. The paper also introduces a holistic algorithm, specifying the major phenomena that disguises as energy fraud or affects it. Consequently, a mathematical foundation for energy fraud detection for the proposed algorithm is presented. The results show that a unique pattern is obtained during fraud, which is independent of a reference non-fraud pattern of the same customer. The theory is implemented on real data taken from smart metering systems and validated in real life scenarios.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference58 articles.

1. Tractebel Impact ENGIE (Tractebel is the energy consultant of ENGIE;Alaton

2. World Fraud Reporthttps://www.prnewswire.com/news-releases/world-loses-893-billion-to-electricity-theft-annually-587-billion-in-emerging-markets-300006515.html

3. CEER Council of European Energy Regulators Report on Power Losses,2014

4. Electricity theft: a comparative analysis

5. Electricity Theft Detection using CNN-GRU and Manta Ray Foraging Optimization Algorithm

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3