Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting

Author:

Tian Xuesong,Zou Yuping,Wang Xin,Tseng MinglangORCID,Li Hua,Zhang Huijuan

Abstract

Electricity inspection is important to support sustainable development and is core to the marketing of electric power. In addition, it contributes to the effective management of power companies and to their financial performance. Continuous improvement in the penetration rate of new energy generation can improve environmental standards and promote sustainable development, but creates challenges for electricity inspection. Traditional electricity inspection methods are time-consuming and quite inefficient, which hinders the sustainable development of power firms. In this paper, a load-forecasting model based on an improved moth-flame-algorithm-optimized extreme learning machine (IMFO-ELM) is proposed for use in electricity inspection. A chaotic map and improved linear decreasing weight are introduced to improve the convergence ability of the traditional moth-flame algorithm to obtain optimal parameters for the ELM. Abnormal data points are screened out to determine the causes of abnormal occurrences by analyzing the model prediction results and the user’s actual power consumption. The results show that, compared with existing PSO-ELM and MFO-ELM models, the root mean square error of the proposed model is reduced by at least 1.92% under the same conditions, which supports application of the IMFO-ELM model in electricity inspection. The proposed power-load-forecasting-based abnormal data detection method can improve the efficiency of electricity inspection, enhance user experience, contribute to the intelligence level of power firms and promote their sustainable development.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3