Abstract
This study investigates the joint water–power system resilience of an irrigation district in southeastern Idaho. Irrigation districts face difficulties in the delivery of water to farmers under drought conditions, during equipment failures, or unplanned infrastructure disruptions. The resilience of interconnected water and power systems can be better analyzed and understood through an integrated approach, using a model that connects the dependencies between the two halves of the system. Using a multi-agent system model capturing both water and power system components, as well as their linkages, we capture the interdependencies of these systems and highlight opportunities for improvement when faced with disruptions. Through simulation scenarios, we examine the system resilience using system performance, quantified as the percentage of met demand of the power and water system, when subjected to drought water year, an unforeseen water demand increase, power outage and dam failure. Scenario results indicate that the effects of low flow years are mostly felt in the power system; unexpected increases in water demand marginally impact irrigation system performance; dams and pumps present vulnerabilities of the system, causing substantial unmet demand during disruptions. Noting the interdependencies between the water–power system halves while leveraging an integrated simulation allows for an insightful analysis of the system impacts during disruptions.
Funder
Water Power Technologies Office
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献