An Analysis of Energy Consumption and the Use of Renewables for a Small Drinking Water Treatment Plant

Author:

Bukhary Saria,Batista Jacimaria,Ahmad SajjadORCID

Abstract

One of the pressing issues currently faced by the water industry is incorporating sustainability considerations into design practice and reducing the carbon emissions of energy-intensive processes. Water treatment, an indispensable step for safeguarding public health, is an energy-intensive process. The purpose of this study was to analyze the energy consumption of an existing drinking water treatment plant (DWTP), then conduct a modeling study for using photovoltaics (PVs) to offset that energy consumption, and thus reduce emissions. The selected plant, located in southwestern United States, treats 0.425 m3 of groundwater per second by utilizing the processes of coagulation, filtration, and disinfection. Based on the energy consumption individually determined for each unit process (validated using the DWTP’s data), the DWTP was sized for PVs (as a modeling study). The results showed that the dependency of a DWTP on the traditional electric grid could be greatly reduced by the use of PVs. The largest consumption of energy was associated with the pumping operations, corresponding to 150.6 Wh m−3 for the booster pumps to covey water to the storage tanks, while the energy intensity of the water treatment units was found to be 3.1 Wh m−3. A PV system with a 1.5 MW capacity with battery storage (30 MWh) was found to have a positive net present value and a levelized cost of electricity of 3.1 cents kWh−1. A net reduction in the carbon emissions was found as 950 and 570 metric tons of CO2-eq year−1 due to the PV-based design, with and without battery storage, respectively.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3