The Influence of a Field-Aged Asphalt Binder and Aggregates on the Skid Resistance of Recycled Hot Mix Asphalt

Author:

Sedthayutthaphong Nathanyawat,Jitsangiam PeerapongORCID,Nikraz Hamid,Pra-ai Suriyavut,Tantanee Sarintip,Nusit KorakodORCID

Abstract

The application of asphalt hot mix recycling is one challenge in sustainable road pavement research. In addition to the vast amount of research on the performance of recycled asphalt–concrete, the research on the frictional resistance of recycled hot mix asphalt is still limited. The effects of aged asphalt and aged aggregates on the skid resistance of recycled hot mix asphalt were investigated in this research. The aged asphalt and aged aggregates were carefully extracted from the field-reclaimed asphalt pavement, and the engineering and mechanical properties of aged and virgin aggregates were measured. The degradation of recycled hot mix asphalt was simulated using an accelerated polishing machine to mimic road surface abrasion. Accordingly, the initial and final skid resistances of the recycled hot mix asphalt were determined and correlated with the properties of the aged asphalt and aggregates. The initial skid resistance of recycled hot mix asphalt decreased with reductions in penetration and ductility of the blended asphalt. However, the changes in the blended asphalt properties contributed only small variations to the final skid resistances of the recycled hot mix asphalt. The gradations of recycled hot mix asphalt correlated only with the final skid resistances. The aggregate gradations controlled the characteristics of the final skid resistance since the covered binder was partially polished off from the road surface at this stage.

Funder

Faculty of Engineering, Naresuan University

Thailand Research Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3