Comprehensive Comparison of a High-Speed Permanent Magnet Synchronous Motor Considering Rotor Length–Diameter Ratio

Author:

Gao Wentao,Zhang Yufeng,Du Guanghui,Pu Tao,Li Niumei

Abstract

For high-speed permanent magnet machines (HSPMMs), many design schemes of rotor length–diameter ratios can satisfy the constraints of multiple physical fields during the motor design period. The rotor length–diameter ratio greatly impacts the comprehensive performances of multiple physical fields. However, these analyses are missing in the existing literature. Therefore, this paper focuses on the influence of the rotor length–diameter ratio on comprehensive performances. Firstly, finite element models (FEM) of multiple physical fields are built by ANSYS Workbench platform and Motor-CAD software. Then, the comprehensive performances of multiple physical fields are comparatively analyzed. Finally, the designed HSPMM is implemented, based on one prototype of 60 kW, 30,000 rpm to verify the results of comparative analysis. Based on the comparative analysis above, the influent laws of rotor length–diameter ratios on comprehensive performances of multiple physical fields are discussed and summarized, which can be used as a reference for the rotor structural design of HSPMMs.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference17 articles.

1. Multiphysics Design and Multiobjective Optimization for High-Speed Permanent Magnet Machines

2. Power Loss and Thermal Analysis for High-Power High-Speed Permanent Magnet Machines

3. Multiphysics analysis of high‐speed permanent magnet generators for waste heat application

4. Performance calculation for a high-speed solid-rotor induction motor;Jacek;IEEE Trans. Ind. Electron.,2012

5. Design aspects of a high-speed electric machine series;Flyur;Proceedings of the 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM),2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3