Study on the Parameters of Strengthening Soft Surrounding Rock by Electric Pulse Grouting in the Mining Face

Author:

Qiao Xiaoguang1,Zhang Runxun1,Zhang Lulu1,Zhang Xinghua1,Zhang Xiaogang1

Affiliation:

1. School of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

As an effective measure for the rapid fracturing of coal and rock, electric pulse fracture technology has been successfully applied in oil extraction and natural gas discharge. Using the electric pulse fracture mechanism, this technology can be applied to grouting reinforcement to improve the infiltration efficiency of grouting. In this study, we used a numerical simulation method to establish numerical models with different electric pulse peak pressures, different grouting times and different drilling spacing conditions Through numerical simulation studies, we found that the influence range of grouting reinforcement grows with the increased maximum pressure generated by the electrical pulse. The most economical and reasonable electric pulse parameter setting is 5 MPa for static grouting pressure and 100 MPa for peak electric pulse pressure. The best grouting time to keep pressure in the borehole is determined as 9 h, and the best borehole interval is 10 m. In addition, through the treatment of the soft roof of the Caojiashan coal mine, we also found that the reinforcement sample within the grouting reinforcement range had a compressive strength of more than 1.1 MPa; after each grouting reinforcement was completed, the hydraulic bracket could advance 12 m each time, which shows that the electric pulse grouting reinforcement technology has an obvious effect on the treatment of soft roof slab.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3