Use of Time-of-Flight Ultrasound to Measure Wave Speed in Poplar Seedlings

Author:

Liu Fenglu,Xu Pengfei,Zhang Houjiang,Guan Cheng,Feng Dan,Wang Xiping

Abstract

In this study, 145 poplar (Populus × euramericana cv.’74/76’) seedlings, a common plantation tree species in China, were selected and their ultrasonic velocities were measured at four timepoints during the first growth year. After that, 60 poplar seedlings were randomly selected and cut down to determine their acoustic velocity, using the acoustic resonance method. The effects of influencing factors such as wood green density, microfibril angle, growth days, and root-collar diameter on acoustic speed in seedlings and the relationship between ultrasonic speed and acoustic resonance speed were investigated and analyzed in this work. The number of specimens used for investigating growth days and root-collar diameter was 145 in both cases, while 60 and two specimens were used for investigating wood density and the microfibril angle, respectively. The results of this study showed that the ultrasonic speed of poplar seedlings significantly and linearly increased with growth days, within 209 growing days. The ultrasonic velocity of poplar seedlings has a high and positive correlation with growth days, and the correlation was 0.99. However, no significant relationship was found between the ultrasonic velocity and root-collar diameter of poplar seedlings. Furthermore, a low and negative relationship was found between wood density and ultrasonic speed (R2 = 0.26). However, ultrasonic velocity significantly decreased with increasing microfibril angle (MFA) in two seedlings, and thus MFA may have an impact on ultrasonic speed in poplar seedlings. In addition, ultrasonic velocity was found to have a strong correlation with acoustic resonance velocity (R2 = 0.81) and a good correlation, R2 = 0.75, was also found between the dynamic moduli of elasticity from ultrasonic and acoustic resonance tests. The results of this study indicate that the ultrasonic technique can possibly be used to measure the ultrasound speed of young seedlings, and thus early screen seedlings for their stiffness properties in the future.

Funder

the Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Reference33 articles.

1. Application of longitudinal-wave time-of-flight sound speed measurement to Pinus radiata seedlings;Emms;Can. J. For. Res.,2013

2. Variation patterns of microfibril angle for Chinese fir wood;Huang;J. Northwest For. Univ.,2007

3. A study on geographic variation in wood microfibril angle of Cyclocarya paliurus;Sun;J. Nanjing For. Univ. Nat. Sci. Ed.,2018

4. Clonal variation and repeatability of microfibril angle in Pinus radiata;Donaldson;N. Z. J. For. Sci.,1995

5. Genetics of wood stiffness and its component traits in Pinus radiata;Dungey;Can. J. For. Res.,2006

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3