Genetics of wood stiffness and its component traits inPinus radiata

Author:

Dungey Heidi S,Matheson A Colin,Kain Dominic,Evans Robert

Abstract

The potential for breeding Pinus radiata D. Don to improve wood stiffness (modulus of elasticity, MoE) was examined by obtaining pith-to-bark cores from trees at breast height in two independent genetic trials. The effectiveness of early selection for stiffness and indirect selection on the component traits, microfibril angle (MfA) and wood density, was determined as well as the age-related changes in the genetic variation of these traits. The first trial comprised 50 open-pollinated families in the central North Island, New Zealand. The second trial comprised 20 control-pollinated families in New South Wales, Australia. The genetic control of MfA, density, and MoE was found to be high in the corewood and moderate in the outerwood. Estimated genetic correlations suggested that early selection for most traits would be successful but could be carried out slightly earlier at the New Zealand site than at the Australian site. To maximize gain in the corewood, selection for MoE and MfA would be most effective around rings 4-8. There were no adverse correlations between MoE and MfA or density, implying that selection for MoE would also improve MfA and density.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3