Abstract
As a phase change evaporator, a microchannel array heat exchanger is of great significance in the field of microscale heat dissipation. The performance of which strongly depends on the flow resistance, capillary force, and other factors. In order to improve the heat dissipation efficiency, it is necessary to perform an in-depth study of the characteristics of microchannel flow using numerical simulation. However, the current simulation model requires high computational cost and long simulation time. To solve this problem, this paper simplifies the numerical simulation of the rectangular parallel array microchannels by building the basic flow model based on the concept of porous media. In addition, we explore the effect of aspect-ratio (AR), hydraulic diameter, inlet velocity, and other parameters of fluid flow behavior inside the microchannels. Meanwhile, a user-defined function (UDF) is formulated to add the capillary force into the model to introduce capillary force into the porous media model. Through the above research, the paper establishes the porous media model for single-phase and gas-liquid two-phase flow, which acts as a simplification of microchannel array simulation without grossly affecting the results obtained. In addition, we designed and manufactured experiments using silicon-based microchannel heat exchangers with different-ratios, and combined with the visualization method to measure the performance of the device and compared them with simulation results. The theoretical model is verified through the suction experiment of array microchannel evaporator capillary core. The simplified model of microchannel array significantly saves the computational cost and time, and provides guidance for the related experimental researches.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献