Abstract
The flow mechanism within a silicon-based micro heat sink plays a crucial role in two-phase thermal dissipation technology. In this study, the effect of geometrical properties on the flow behavior within a silicon-based array parallel microchannel as the evaporator of a silicon-based micro loop heat pipe (s-mLHP) is experimentally and numerically investigated. Here, three arrayed microchannels with different aspect ratio (AR) parameters (depth of 180 μm and AR of 6, 9, and 15) are specially fabricated. A visual experiment platform is established to observe and measure capillary properties of microchannels characterized by the suction distance. In addition, a validated numerical model (the maximum deviation less than 38.3%) is applied to simulate the flow characteristics of microchannels with different ARs. Numerical solutions show that the microchannel with ARs taken between 3 and 4 achieves the best capillary pumping performance within the studied range (suction distance up to 0.8 mm), which provides a theoretical basis for further exploration of silicon-based microchannel array with the optimal flow and thermal performance.
Funder
Suzhou Science and Technology Plan
Natural Science Foundation of Shandong Province
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering