Utilization of a Gas-Sensing System to Discriminate Smell and to Monitor Fermentation during the Manufacture of Oolong Tea Leaves

Author:

Tseng Ting-Shiang,Hsiao Mei-Hui,Chen Po-An,Lin Shu-Yen,Chiu Shih-Wen,Yao Da-JengORCID

Abstract

The operational duration of shaking tea leaves is a critical factor in the manufacture of oolong tea; this duration influences the formation of its flavor and fragrance. The current method to control the duration of fermentation relies on the olfactory sense of tea masters; they monitor the entire process through their olfactory sense, and their experience decides the duration of shaking and setting. Because of this human factor and olfactory fatigue, it is difficult to define an optimum duration of shaking and setting; an inappropriate duration of shaking and setting deteriorates the quality of the tea. In this study, we used metal-oxide-semiconductor gas sensors to establish an electronic nose (E-nose) system and tested its feasibility. This research was divided into two experiments: distinguishing samples at various stages and an on-line experiment. The samples of tea leaves at various stages exhibited large differences in the level of grassy smell. From the experience of practitioners and from previous research, the samples could be categorized into three groups: before the first shaking (BS1), before the shaking group, and after the shaking group. We input the experimental results into a linear discriminant analysis to decrease the dimensions and to classify the samples into various groups. The results show that the smell can also be categorized into three groups. After distinguishing the samples with large differences, we conducted an on-line experiment in a tea factory and tried to monitor the smell variation during the manufacturing process. The results from the E-nose were similar to those of the sense of practitioners, which means that an E-nose has the possibility to replace the sensory function of practitioners in the future.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3