Preparation of Microneedle Array Mold Based on MEMS Lithography Technology

Author:

Wang Jie,Wang Huan,Lai Liyan,Li Yigui

Abstract

As a transdermal drug delivery technology, microneedle array (MNA) has the characteristics of painless, minimally invasive, and precise dosage. This work discusses and compares the new MNA mold prepared by our group using MEMS technology. First, we introduced the planar pattern-to-cross-section technology (PCT) method using LIGA (Photolithography, Galvanogormung, Abformung) technology to obtain a three-dimensional structure similar to an X-ray mask pattern. On this basis, combined with polydimethylsiloxane (PDMS) transfer technology and electroplating process, metal MNA can be prepared. The second method is to use silicon wet etching combined with the SU-8 process to obtain a PDMS quadrangular pyramid MNA using PDMS transfer technology. Third method is to use the tilting rotary lithography process to obtain PDMS conical MNA on SU-8 photoresist through PDMS transfer technology. All three processes utilize parallel subtractive manufacturing methods, and the error range of reproducibility and accuracy is 2–11%. LIGA technology produces hollow MNA with an aspect ratio of up to 30, which is used for blood extraction and drug injection. The height of the MNA prepared by the engraving process is about 600 μm, which can achieve a sustained release effect together with a potential systemic delivery. The height of the MNA prepared by the ultraviolet exposure process is about 150 μm, which is used to stimulate the subcutaneous tissue.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3