Image Pre-Processing Method of Machine Learning for Edge Detection with Image Signal Processor Enhancement

Author:

Park Keumsun,Chae MinahORCID,Cho Jae HyukORCID

Abstract

Even though computer vision has been developing, edge detection is still one of the challenges in that field. It comes from the limitations of the complementary metal oxide semiconductor (CMOS) Image sensor used to collect the image data, and then image signal processor (ISP) is additionally required to understand the information received from each pixel and performs certain processing operations for edge detection. Even with/without ISP, as an output of hardware (camera, ISP), the original image is too raw to proceed edge detection image, because it can include extreme brightness and contrast, which is the key factor of image for edge detection. To reduce the onerousness, we propose a pre-processing method to obtain optimized brightness and contrast for improved edge detection. In the pre-processing, we extract meaningful features from image information and perform machine learning such as k-nearest neighbor (KNN), multilayer perceptron (MLP) and support vector machine (SVM) to obtain enhanced model by adjusting brightness and contrast. The comparison results of F1 score on edgy detection image of non-treated, pre-processed and pre-processed with machine learned are shown. The pre-processed with machine learned F1 result shows an average of 0.822, which is 2.7 times better results than the non-treated one. Eventually, the proposed pre-processing and machine learning method is proved as the essential method of pre-processing image from ISP in order to gain better edge detection image. In addition, if we go through the pre-processing method that we proposed, it is possible to more clearly and easily determine the object required when performing auto white balance (AWB) or auto exposure (AE) in the ISP. It helps to perform faster and more efficiently through the proactive ISP.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3