Comparison of Pigment Production by Filamentous Fungal Strains under Submerged (SmF) and Surface Adhesion Fermentation (SAF)

Author:

Rengifo Liliana R.,Rosas Paola,Méndez Nicolás,Ludeña YvetteORCID,Sirvas Susana,Samolski IlanitORCID,Villena Gretty K.ORCID

Abstract

Although synthetic colorants are widely used in many industries due to their high stability at different conditions in industrial processes, evidence of its negative impact on health and the environment is undeniable. Filamentous fungi are well known for their use as alternative sources to produce natural pigments. However, an adequate comparison of the productivity parameters between the fermentation systems could be limited to their heterogeneous conditions. Even though Solid-State Fermentations (SSF) on natural substrates are widely used for pigments production, complex media, and non-controlled variables (T, pH, medium composition), these systems could not only hamper the finding of accurate productivity parameters, but also mathematical modeling and genomics-based optimization. In this context, the present study screened five pigment-producing fungi by comparing Submerged (SmF) and Surface Adhesion Fermentation [biofilm (BF) and Solid-State (SSF)] with defined media and controlled variables. For this purpose, we used the same defined media with sucrose as the carbon source for pigment production on SmF, BF, and SSF, and BF and SSF were carried out on inert supports. Five molecularly identified Penicillium and Talaromyces strains isolated from the Peruvian rainforest were selected for their ability to produce yellowish-orange colorants. Highest productivities were obtained from T. brunneus LMB-HP43 in SmF (0.18 AU/L/h) and SSF (0.17 AU/L/h), and P. mallochii LMB-HP37 in SSF (0.18 AU/L/h). Both strains also exhibited the highest yields (AU/g biomass) in the three fermentation systems, reaching values greater than 18-folds in SSF compared to the other strains. Conversely, T. wortmannii LMB-HP14 and P. maximae LMB-HP33 showed no ability to produce pigments in the SSF system. The performed experiments accurately compared the effect of the fermentation system on yield and productivity. From this, further genomics approaches can be considered for an extensive analysis of pigment synthesis pathways and a genomics-driven optimization in the best fermentation system.

Funder

CONCYTEC

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3