Flow Discharge Prediction Study Using a CFD-Based Numerical Model and Gene Expression Programming

Author:

Mozaffari SevdaORCID,Amini ErfanORCID,Mehdipour Hossein,Neshat MehdiORCID

Abstract

The significance of spillways is to allow the flood to be safely discharged from downstream. There is a strong correlation between the poor design of spillways and the failures of dams. In order to address this concern, the present study investigates the flow over the Nazloo-ogee spillway using the CFD 3D numerical model and an artificial intelligence method called Gene Expression Programming (GEP). In a physical model, discharge and flow depths were calculated for 21 different total heads. Among different turbulence models, the RNG turbulence model achieved the maximum compatibility in computational fluid dynamic simulation. In addition, GEP was used to estimate Q, in which 70% of collected data was dedicated to training and 30% to testing. R2, RMSE, and MAE were obtained as performance criteria, and the new mathematical equation for the prediction of discharge was obtained using this model. Finally, the numerical model and GEP outputs were compared with the experimental data. According to the results, the numerical model and GEP exhibited a high level of correspondence in simulating flow over an ogee-crested spillway.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3