3D Hydrodynamic Modelling Enhances the Design of Tendaho Dam Spillway, Ethiopia

Author:

Demeke Getnet Kebede,Asfaw Dereje Hailu,Shiferaw Yilma Seleshi

Abstract

Hydraulic structures are often complex and in many cases their designs require attention so that the flow behavior around hydraulic structures and their influence on the environment can be predicted accurately. Currently, more efficient computational fluid dynamics (CFD) codes can solve the Navier–Stokes equations in three-dimensions and free surface computation in a significantly improved manner. CFD has evolved into a powerful tool in simulating fluid flows. In addition, CFD with its advantages of lower cost and greater flexibility can reasonably predict the mean characteristics of flows such as velocity distributions, pressure distributions, and water surface profiles of complex problems in hydraulic engineering. In Ethiopia, Tendaho Dam Spillway was constructed recently, and one flood passed over the spillway. Although the flood was below the designed capacity, there was an overflow due to superelevation at the bend. Therefore, design of complex hydraulic structures using the state-of- art of 3D hydrodynamic modelling enhances the safety of the structures. 3D hydrodynamic modelling was used to verify the safety of the spillway using designed data and the result showed that the constructed hydraulic section is not safe unless it is modified.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference26 articles.

1. The United Nations World Water Development Report Water and Jobs: Facts and Figures;Tran,2016

2. Water Resources and Irrigation Development in Ethiopiahttps://www.researchgate.net/publication/42765483_Water_Resources_and_Irrigation_Development_in_Ethiopia

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3