Effect of Independent Variables on Urban Flood Models

Author:

Geng YanfenORCID,Zhu Baohang,Zheng Xin

Abstract

The simulation accuracy of urban flood models is affected by independent variables describing terrain resolution and artificial land cover. An evaluation of these effects could provide suggestions for the improvement of simulation accuracy when the available terrain resolutions and representation methods of land cover are different. This paper focused on exploring and evaluating these effects on simulation accuracy using two indicators, relative depth accuracy (RDA) and relative area accuracy (RAA). The study area was the Nanjing Jianye district in China, which has experienced extensive urbanization. Designed rainfall (2 and 10 year return periods) and three terrain resolutions (17, 35, and 70 m) were used in this paper. Building blocks (BB), road drainage (RD), and a combination of both (BB + RD) were compared to present the effect of artificial land cover. Real flood events were initially simulated as a model verification case, and hypothetic modeling scenarios were simulated to evaluate the effects of different resolutions and representation methods. The results indicate that the effect of terrain resolutions on simulation accuracy was more obvious than that of artificial land cover in the study area. In this paper, 20–30% higher accuracy could be achieved in the 35 m resolution model with respect to the 70 m resolution model. A relative accuracy of 94% was achieved in the 17 m resolution model when using the BB method, which was 5% higher than that using the RD method. This paper shows that evaluating the effects of terrain resolution and artificial land cover is effective and helpful for improving the simulation accuracy of urban flood models in extensively urbanized districts.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3