Assessment of Flood Inundation by Coupled 1D/2D Hydrodynamic Modeling: A Case Study in Mountainous Watersheds along the Coast of Southeast China

Author:

Zhang Wenting,Zhang XingnanORCID,Liu Yongzhi,Tang Wenwen,Xu Jan,Fu Zhimin

Abstract

Mountain flood disasters in China’s southeastern coastal watershed are not predictable and are sudden. With rapid urbanization and development in the middle and lower reaches of the region, the accumulation of wealth and population has magnified the flood risk. Exploring flood numerical simulation technology suitable for the rapid economic development of mountainous basins, effective flood models are the key tools for controlling and mitigating flood disasters. In this paper, we established a 1D/2D real-time dynamic coupling hydraulic model, aimed at exploring the applicability of the model in flood simulation of mountainous river basins with rapid economic development. The Luojiang River Basin (Huazhou Section) in Guangdong Province was used as the case study. The model’s ability was validated against the 22 July 2010 and 14 August 2013 inundation events that occurred there. The simulation results show that the output of the flood model is highly similar to the observation and survey results of historical flood events. The research results prove that the 1D/2D coupling model is not only an applicable tool for exploring flood spread characteristics such as flood range, velocity, depth, arrival time, and duration, but also can feed back the impact of water conservancy projects such as dikes on flood spread in the basin. It is of great significance to effectively guide the comprehensive design and management of subsequent wading projects in mountain river basins, and to improve flood prevention and disaster reduction capabilities in mountain areas.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3