A Meta-Learning-Based Train Dynamic Modeling Method for Accurately Predicting Speed and Position

Author:

Cao Ying1,Wang Xi1,Zhu Li2,Wang Hongwei3,Wang Xiaoning4

Affiliation:

1. The School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

2. The State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

3. The National Research Center of Railway Safety Assessment, Beijing Jiaotong University, Beijing 100044, China

4. The School of Data Science and Media Intelligence, Communication University of China, Beijing 100024, China

Abstract

The train dynamics modeling problem is a challenging task due to the complex dynamic characteristics and complicated operating environment. The flexible formations, the heavy carriage load, and the nonlinear feature of air braking further increase the difficulty of modeling the dynamics of heavy haul trains. In this study, a novel data-driven train dynamics modeling method is designed by combining the attention mechanism (AM) with the gated recursive unit (GRU) neural network. The proposed learning network consists of the coding, decoding, attention, and context layers to capture the relationship between the train states with the control command, the line condition, and other influencing factors. To solve the data insufficiency problem for new types of heavy haul trains to be deployed, the model agnostic meta-learning (MAML) framework is adopted to achieve knowledge transferring from tasks supported by large amounts of field data to data-insufficient tasks. Effective knowledge transfer can enhance the efficiency of data resource utilization, reduce data requirements, and lower computational costs, demonstrating considerable potential in the application of sustainable development. The simulation results validate the effectiveness of the proposed MAML-based method in enhancing accuracy.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Technological Research and Development Program of China Railway Corporation

State Key Laboratory of Rail Traffic Control and Safety through Beijing Jiaotong University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3