Pilot Scale Cavitational Reactors and Other Enabling Technologies to Design the Industrial Recovery of Polyphenols from Agro-Food By-Products, a Technical and Economical Overview

Author:

Cravotto GiancarloORCID,Mariatti Francesco,Gunjevic Veronika,Secondo Massimo,Villa Matteo,Parolin Jacopo,Cavaglià Giuliano

Abstract

We herein provide an overview of the most recent multidisciplinary process advances that have occurred in the food industry as a result of changes in consumer lifestyle and expectations. The demand for fresher and more natural foods is driving the development of new technologies that may efficiently operate at room temperature. Moreover, the huge amount of material discarded by the agro-food production chain lays down a significant challenge for emerging technologies that can provide new opportunities by recovering valuable by-products and creating new applications. Aiming to design industrial processes, there is a need for pilot scale plants such as the ‘green technologies development platform’, which was established by the authors. The platform is made up of a series of multifunctional laboratories that are equipped with non-conventional pilot reactors, developed in direct collaboration with partner companies, in order to bridge the enormous gap between academia and industry via the large-scale exploitation of relevant research achievements. Selected key, enabling technologies for process intensification make this scale-up feasible. We make use of two selected examples, the grape and olive production chains, to show how cavitational reactors, which are based on high-intensity ultrasound and rotational hydrodynamic units, can assist food processing and the sustainable recovery of waste, to produce valuable nutraceuticals as well as colouring and food–beverage additives.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3