The Effect of Wettability and Flow Rate on Oil Displacement Using Polymer-Coated Silica Nanoparticles: A Microfluidic Study

Author:

Omran Mohamed,Akarri SalemORCID,Torsaeter OleORCID

Abstract

Polymer-coated silica nanoparticles (PSiNPs) have been experimentally investigated in core- and micro-scale studies for enhanced oil recovery (EOR). Wettability and flow rate have a considerable effect on oil displacement in porous media. This work investigates the efficiency of PSiNPs for oil recovery on micro-scale at three wettability states (water-wet, intermediate-wet, and oil-wet). In addition, a cluster mobilization regime is considered in all experiments. A microfluidic approach was utilized to perform flooding experiments with constant experimental settings such as flowrate, pore-structure, initial oil topology, porosity, and permeability. In this study, the wettability of the microfluidic chips was altered to have three states of wettability. Firstly, a micro-scale study (brine-oil-glass system) of each wettability condition effect on flow behavior was conducted via monitoring dynamic changes in the oleic phase. Secondly, the obtained results were used as a basis to understand the changes induced by the PSiNPs while flooding at the same conditions. The experimental data were extracted by means of image processing and analysis at a high spatial and temporal resolution. Low injection rate experiments (corresponding to ~1.26 m/day in reservoir) in a brine-oil-glass system showed that the waterflood invaded with a more stable front with a slower displacement velocity in the water-wet state compared to the other states, which had water channeling through the big pores. As a result, a faster stop of the dynamic changes for the intermediate- and oil-wet state was observed, leading to lower oil recoveries compared to the water-wet state. In a cluster mobilization regime, dynamic changes were noticeable only for the oil-wet condition. For the aforementioned different conditions, PSiNPs improved oil displacement efficiency. The usage of PSiNPs showed a better clusterization efficiency, leading to a higher mobilization, smaller remaining oil clusters, and lower connectivity of the residual oil. The knowledge from this experimental work adds to the understanding of the behavior of polymer-coated silica nanoparticles as a recovery agent at different wettability states and a cluster mobilization regime.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3