Study on the Mobilization Mechanisms of Microscopic Residual Oil in High-Water-Cut Sandstone Reservoirs

Author:

Sun Chen1ORCID,Wang Xiaoyan1,Zhao Jian2,Zhang Jin3,Wu Xing1,Wang Wei1,Yan Xi1

Affiliation:

1. Oil Production Technology Research Institute, PetroChina Dagang Oilfield, Tianjin 300280, China

2. Exploration and Development Research Institute, PetroChina Tuha Oilfield, Hami 839009, China

3. Petroleum Engineering Research Institute, PetroChina Dagang Oilfield, Tianjin 300280, China

Abstract

As mature oilfields enter the high-water-cut development stage, significant amounts of residual oil remain trapped underground. To enhance the effectiveness of tertiary oil recovery, it is crucial to understand the distribution and mobilization patterns of this residual oil. In this study, polydimethylsiloxane (PDMS) was used to create a microscopic oil displacement model, which was observed and recorded using a stereomicroscope. The experimental images were extracted, analyzed, and quantitatively evaluated, categorizing the microscopic residual oil in the high-water-cut sandstone reservoirs of Dagang Oilfield into cluster-like, pore surface film-like, corner-like, and slit-like types. Polymer–surfactant composite flooding (abbreviated as SP flooding) effectively mobilized 47.16% of cluster-like residual oil and 43.74% of pore surface film-like residual oil, with some mobilization of corner-like and slit-like residual oil as well. Building on SP flooding, dual-mobility flooding further increased the mobilization of cluster-like residual oil by 12.37% and pore surface film-like residual oil by 3.52%. With the same slug size, dual-mobility flooding can reduce development costs by 16.43%. Overall, dual-mobility flooding offers better development prospects.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3