Modelling a Switching Process of IGBTs with Influence of Temperature Taken into Account

Author:

Górecki PawełORCID,Górecki KrzysztofORCID

Abstract

In this article the problem of modelling a switching process of Insulated Gate Bipolar Transistors (IGBTs) in the SPICE software is considered. The new form of the considered transistor model is presented. The model includes controlled voltage and current sources, resistors and voltage sources. In the model, influence of temperature on dc and dynamic characteristics of the IGBT is taken into account. A detailed description of the dynamic part of this model is included in the article and some results of experimental verification are shown. Verification is performed for a transistor IRG4PC40UD by International Rectifier. The presented results of computations and measurements show clearly influence of temperature on on-time and off-time, and additionally switching energy losses are observed. Moreover, the results of investigations performed with the use of the new model are compared to the results of computations performed with classical models of the considered device given in the literature. It is proved that the new model makes it possible to obtain a better match to the results of measurements than the considered models described in the literature.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. The insulated gate transistor: A new three-terminal MOS-controlled bipolar power device

2. Fundamentals of Power Electronics;Ericson,2001

3. Power Electronic Handbook;Rashid,2007

4. Pulse-width Modulated DC-DC Power Converters;Kazimierczuk,2008

5. Modeling and simulation of power electronic converters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3