Influence of Parasitic Elements and Operating Conditions of Semiconductor Switches on Power Losses and the Junction Temperature of These Switches

Author:

Górecki Krzysztof1ORCID

Affiliation:

1. Department of Marine Electronics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland

Abstract

This article presents the results of computer analysis of selected switching networks. In these analyses, the influence of selected parasitic components of electronic switches on the total and active power losses in these switches is considered. Analyses are performed using the SPICE software for two models of semiconductor switches: an ideal switch with RC parasitic components and the SPICE model of an IGBT. The influence of parasitic capacitances and resistances of these devices operating with the control signal of different parameters values on the total and active power dissipated in these switches is analyzed. On the basis of the obtained computations the average and peak-to-peak values of the junction temperature of electronic switches at the steady state are calculated using a compact thermal model. It is shown that parasitic elements visibly influence waveforms of the active and total power. It is proved that the simplified model using the total power in computations of the junction temperature makes it possible to obtain a high accuracy of computations only in a situation when the transistor operates with a resistive load. For an inductive load, such simplification can cause an unacceptably high computation error exceeding even 30%. Such an error is a result of big differences between the active and total powers during switching-on and switching-off processes.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3