Conventional and Innovative Hygienization of Feedstock for Biogas Production: Resistance of Indicator Bacteria to Thermal Pasteurization, Pulsed Electric Field Treatment, and Anaerobic Digestion

Author:

Liu XiaojunORCID,Lendormi ThomasORCID,Lanoisellé Jean-LouisORCID

Abstract

Animal by-products (ABP) can be valorized via anaerobic digestion (AD) for biogas energy generation. The digestate issued from AD process is usually used to fertilize farming land for agricultural activities, which may cause potential sanitary risk to the environment. The European Union (EU) requires that certain ABP be thermally pasteurized in order to minimize this sanitary risk. This process is called hygienization, which can be replaced by alternative nonthermal technologies like pulsed electric field (PEF). In the present study, Enterococcus faecalis ATCC 19433 and Escherichia coli ATCC 25922 were used as indicator bacteria. Their resistance to thermal pasteurization and PEF treatment were characterized. Results show that Ent. faecalis and E. coli are reduced by 5 log10 in less than 1 min during thermal pasteurization at 70 °C. The critical electric field strength was estimated at 18 kV∙cm−1 for Ent. faecalis and 1 kV∙cm−1 for E. coli. “G+” bacteria Ent. faecalis are generally more resistant than “G−” bacteria E. coli. AD process also plays an important role in pathogens inactivation, whose performance depends on the microorganisms considered, digestion temperature, residence time, and type of feedstock. Thermophilic digestion is usually more efficient in pathogens removal than mesophilic digestion.

Funder

Conseil Régional de Bretagne

Departmental Council of Morbihan

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3