An Improved and Integrated Design of Segmented Dynamic Wireless Power Transfer for Electric Vehicles

Author:

Wang Heshou,Cheng Ka Wai EricORCID

Abstract

This paper describes improvements in a segmented dynamic wireless power transfer (DWPT) system for electric vehicles (EVs), and aims to offer a stable charging method for high-power applications. An integrated design is presented, including the modified switching sequence, the size of segmented transmitters, and parallel inverter technology for high-power applications. Three consecutive transmitters mounted on the rail track are energized according to the position of the pickups. This three-consecutive-transmitter group is comprised of a Q-shaped coil, a DD-shaped coil, and a Q-shaped coil again (QDDQ). QDDQ is used as an elementary energized group to optimize the number of energized transmitters and mitigate the output voltage variation. The entire DWPT system is designed with finite element analysis (FEA) and studied with circuit topologies. Overall, an experimental prototype for dynamic charging is built to verify the overall performance, which shows a great agreement with the theoretical analysis. In this prototype, there are five transmitters and one receiver. All dimensions are 500 mm × 500 mm. The proposed system has been validated to realize 500 V constant output voltage with approximately 85% dc-dc efficiency from the 100 Ω to 200 Ω load conditions. A 2.5 kW maximum output power occurs at the 100 Ω load condition.

Funder

University Grant Council RGF, Hong Kong

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3