SASTGCN: A Self-Adaptive Spatio-Temporal Graph Convolutional Network for Traffic Prediction

Author:

Li Wei1ORCID,Zhan Xi2,Liu Xin1,Zhang Lei3ORCID,Pan Yu4,Pan Zhisong1

Affiliation:

1. Command and Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China

2. Nanjing Research Institute of Electronic Engineering, Nanjing 210007, China

3. Academy of Military Science, Beijing 100091, China

4. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

Traffic prediction plays a significant part in creating intelligent cities such as traffic management, urban computing, and public safety. Nevertheless, the complex spatio-temporal linkages and dynamically shifting patterns make it somewhat challenging. Existing mainstream traffic prediction approaches heavily rely on graph convolutional networks and sequence prediction methods to extract complicated spatio-temporal patterns statically. However, they neglect to account for dynamic underlying correlations and thus fail to produce satisfactory prediction results. Therefore, we propose a novel Self-Adaptive Spatio-Temporal Graph Convolutional Network (SASTGCN) for traffic prediction. A self-adaptive calibrator, a spatio-temporal feature extractor, and a predictor comprise the bulk of the framework. To extract the distribution bias of the input in the self-adaptive calibrator, we employ a self-supervisor made of an encoder–decoder structure. The concatenation of the bias and the original characteristics are provided as input to the spatio-temporal feature extractor, which leverages a transformer and graph convolution structures to learn the spatio-temporal pattern, and then applies a predictor to produce the final prediction. Extensive trials on two public traffic prediction datasets (METR-LA and PEMS-BAY) demonstrate that SASTGCN surpasses the most recent techniques in several metrics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3