A Two-Stage Method for Parameter Identification of a Nonlinear System in a Microbial Batch Process

Author:

Xu GongxianORCID,Lv Dongxue,Tan Wenxin

Abstract

This paper deals with the parameter identification of a microbial batch process of glycerol to 1,3-propanediol (1,3-PD). We first present a parameter identification model for the excess kinetics of a microbial batch process of glycerol to 1,3-PD. This model is a nonlinear dynamic optimization problem that minimizes the sum of the least-square and slope errors of biomass, glycerol, 1,3-PD, acetic acid, and ethanol. Then, a two-stage method is proposed to efficiently solve the presented dynamic optimization problem. In this method, two nonlinear programming problems are required to be solved by a genetic algorithm. To calculate the slope of the experimental concentration data, an integral equation of the first kind is solved by using the Tikhonov regularization. The proposed two-stage method could not only optimally identify the model parameters of the biological process, but could also yield a smaller error between the measured and computed concentrations than the single-stage method could, with a decrease of about 52.79%. A comparative study showed that the proposed two-stage method could obtain better identification results than the single-stage method could.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequential Geometric Programming Method for Parameter Estimation of a Nonlinear System in Microbial Continuous Fermentation;International Journal of Chemical Engineering;2023-10-10

2. Orthogonal Maximum Correntropy Learning;2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP);2022-08-22

3. Steady-State Optimization of a Biological Process;2021 7th International Conference on Systems and Informatics (ICSAI);2021-11-13

4. Multi-objective steady-state optimization for a complex bioprocess in glycerol metabolism;Results in Control and Optimization;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3