Application of the Random Forest Classifier to Map Irrigated Areas Using Google Earth Engine

Author:

Magidi JamesORCID,Nhamo LuxonORCID,Mpandeli Sylvester,Mabhaudhi TafadzwanasheORCID

Abstract

Improvements in irrigated areas’ classification accuracy are critical to enhance agricultural water management and inform policy and decision-making on irrigation expansion and land use planning. This is particularly relevant in water-scarce regions where there are plans to increase the land under irrigation to enhance food security, yet the actual spatial extent of current irrigation areas is unknown. This study applied a non-parametric machine learning algorithm, the random forest, to process and classify irrigated areas using images acquired by the Landsat and Sentinel satellites, for Mpumalanga Province in Africa. The classification process was automated on a big-data management platform, the Google Earth Engine (GEE), and the R-programming was used for post-processing. The normalised difference vegetation index (NDVI) was subsequently used to distinguish between irrigated and rainfed areas during 2018/19 and 2019/20 winter growing seasons. High NDVI values on cultivated land during the dry season are an indication of irrigation. The classification of cultivated areas was for 2020, but 2019 irrigated areas were also classified to assess the impact of the Covid-19 pandemic on agriculture. The comparison in irrigated areas between 2019 and 2020 facilitated an assessment of changes in irrigated areas in smallholder farming areas. The approach enhanced the classification accuracy of irrigated areas using ground-based training samples and very high-resolution images (VHRI) and fusion with existing datasets and the use of expert and local knowledge of the study area. The overall classification accuracy was 88%.

Funder

Tshwane University of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3