Multicomponent Stress–Strength Model Based on Generalized Progressive Hybrid Censoring Scheme: A Statistical Analysis

Author:

Ma Haijing,Yan ZaizaiORCID,Jia Junmei

Abstract

The statistical inference of the reliability and parameters of the stress–strength model has received great attention in the field of reliability analysis. When following the generalized progressive hybrid censoring (GPHC) scheme, it is important to discuss the point estimate and interval estimate of the reliability of the multicomponent stress–strength (MSS) model, in which the stress and the strength variables are derived from different distributions by assuming that stress follows the Chen distribution and that strength follows the Gompertz distribution. In the present study, the Newton–Raphson method was adopted to derive the maximum likelihood estimation (MLE) of the model parameters, and the corresponding asymptotic distribution was adopted to construct the asymptotic confidence interval (ACI). Subsequently, the exact confidence interval (ECI) of the parameters was calculated. A hybrid Markov chain Monte Carlo (MCMC) method was adopted to determine the approximate Bayesian estimation (BE) of the unknown parameters and the high posterior density credible interval (HPDCI). A simulation study with the actual dataset was conducted for the BEs with squared error loss function (SELF) and the MLEs of the model parameters and reliability, comparing the bias and mean squares errors (MSE). In addition, the three interval estimates were compared in terms of the average interval length (AIL) and coverage probability (CP).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference29 articles.

1. The Estimation of Reliability from stress-strength Relationships;Church,1967

2. New Approximate Inferential Methods for the Reliability Parameter in a Stress–Strength Model: The Normal Case

3. Estimation of Stress-Strength Reliability Model Using Finite Mixture of Two Parameter Lindley Distributions;Khan;Stat. Appl. Probab.,2015

4. Estimation of P(Y;Kundu;Stat. Comput. Simul.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3