Electronic Modulation of the 3D Architectured Ni/Fe Oxyhydroxide Anchored N-Doped Carbon Aerogel with Much Improved OER Activity

Author:

Lu Jiaxin1,Hao Wenke1,Wu Xiaodong1,Shen Xiaodong1,Cui Sheng1,Shi Wenyan2

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

2. Department of Electromechanical inspection, Product Quality Supervising and Inspecting Institute of Taizhou, Taizhou 225300, China

Abstract

It remains a big challenge to develop non-precious metal catalysts for oxygen evolution reaction (OER) in energy storage and conversion systems. Herein, a facile and cost-effective strategy is employed to in situ prepare the Ni/Fe oxyhydroxide anchored on nitrogen-doped carbon aerogel (NiFeOx(OH)y@NCA) for OER electrocatalysis. The as-prepared electrocatalyst displays a typical aerogel porous structure composed of interconnected nanoparticles with a large BET specific surface area of 231.16 m2·g−1. In addition, the resulting NiFeOx(OH)y@NCA exhibits excellent OER performance with a low overpotential of 304 mV at 10 mA·cm−2, a small Tafel slope of 72 mV·dec−1, and excellent stability after 2000 CV cycles, which is superior to the commercial RuO2 catalyst. The much enhanced OER performance is mainly derived from the abundant active sites, the high electrical conductivity of the Ni/Fe oxyhydroxide, and the efficient electronic transfer of the NCA structure. Density functional theory (DFT) calculations reveal that the introduction of the NCA regulates the surface electronic structure of Ni/Fe oxyhydroxide and increases the binding energy of intermediates as indicated by the d-band center theory. This work provides a new method for the construction of advanced aerogel-based materials for energy conversion and storage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3