A Comparative Study of Visual Identification Methods for Highly Similar Engine Tubes in Aircraft Maintenance, Repair and Overhaul

Author:

Prünte Philipp1ORCID,Schoepflin Daniel12ORCID,Schüppstuhl Thorsten1ORCID

Affiliation:

1. Institute of Aircraft Production Technology, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg, Germany

2. Lufthansa Technik AG, Weg beim Jäger 193, 22335 Hamburg, Germany

Abstract

Unique identification of machine parts is critical to production and maintenance, repair and overhaul (MRO) processes in the aerospace industry. Despite recent advances in automating these identification processes, many are still performed manually. This is time-consuming, labour-intensive and prone to error, particularly when dealing with visually similar objects that lack distinctive features or markings or when dealing with parts that lack readable identifiers due to factors such as dirt, wear and discolouration. Automation of these processes has the potential to alleviate these problems. However, due to the high visual similarity of components in the aerospace industry, commonly used object identifiers are not directly transferable to this domain. This work focuses on the challenging component spectrum engine tubes and aims to understand which identification method using only object-inherent properties can be applied to such problems. Therefore, this work investigates and proposes a comprehensive set of methods using 2D image or 3D point cloud data, incorporating digital image processing and deep learning approaches. Each of these methods is implemented to address the identification problem. A comprehensive benchmark problem is presented, consisting of a set of visually similar demonstrator tubes, which lack distinctive visual features or markers and pose a challenge to the different methods. We evaluate the performance of each algorithm to determine its potential applicability to the target domain and problem statement. Our results indicate a clear superiority of 3D approaches over 2D image analysis approaches, with PointNet and point cloud alignment achieving the best results in the benchmark.

Funder

IFB Hamburg, Germany

Funding Programme Open Access Publishing of Hamburg University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3