Customised Intrusion Detection for an Industrial IoT Heterogeneous Network Based on Machine Learning Algorithms Called FTL-CID

Author:

Abosata NasrORCID,Al-Rubaye SabaORCID,Inalhan GokhanORCID

Abstract

Technological breakthroughs in the Internet of Things (IoT) easily promote smart lives for humans by connecting everything through the Internet. The de facto standardised IoT routing strategy is the routing protocol for low-power and lossy networks (RPL), which is applied in various heterogeneous IoT applications. Hence, the increase in reliance on the IoT requires focus on the security of the RPL protocol. The top defence layer is an intrusion detection system (IDS), and the heterogeneous characteristics of the IoT and variety of novel intrusions make the design of the RPL IDS significantly complex. Most existing IDS solutions are unified models and cannot detect novel RPL intrusions. Therefore, the RPL requires a customised global attack knowledge-based IDS model to identify both existing and novel intrusions in order to enhance its security. Federated transfer learning (FTL) is a trending topic that paves the way to designing a customised RPL-IoT IDS security model in a heterogeneous IoT environment. In this paper, we propose a federated-transfer-learning-assisted customised distributed IDS (FT-CID) model to detect RPL intrusion in a heterogeneous IoT. The design process of FT-CID includes three steps: dataset collection, FTL-assisted edge IDS learning, and intrusion detection. Initially, the central server initialises the FT-CID with a predefined learning model and observes the unique features of different RPL-IoTs to construct a local model. The experimental model generates an RPL-IIoT dataset with normal and abnormal traffic through simulation on the Contiki-NG OS. Secondly, the edge IDSs are trained using the local parameters and the globally shared parameters generated by the central server through federation and aggregation of different local parameters of various edges. Hence, transfer learning is exploited to update the server’s and edges’ local and global parameters based on relational knowledge. It also builds and customised IDS model with partial retraining through local learning based on globally shared server knowledge. Finally, the customised IDS in the FT-CID model enforces the detection of intrusions in heterogeneous IoT networks. Moreover, the FT-CID model accomplishes high RPL security by implicitly utilising the local and global parameters of different IoTs with the assistance of FTL. The FT-CID detects RPL intrusions with an accuracy of 85.52% in tests on a heterogeneous IoT network.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3