A Review of Intrusion Detection Systems in RPL Routing Protocol Based on Machine Learning for Internet of Things Applications

Author:

Seyfollahi Ali1ORCID,Ghaffari Ali1ORCID

Affiliation:

1. Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

IPv6 routing protocol for low-power and lossy networks (RPL) has been developed as a routing agent in low-power and lossy networks (LLN), where nodes’ resource constraint nature is challenging. This protocol operates at the network layer and can create routing and optimally distribute routing information between nodes. RPL is a low-power, high-throughput IPv6 routing protocol that uses distance vectors. Each sensor-to-wire network router has a collection of fixed parents and a preferred parent on the path to the Destination-oriented directed acyclic graph (DODAG) graph’s root in steady-state. Each router part of the graph sends DODAG information object (DIO) control messages and specifies its rank within the graph, indicating its position within the network relative to the root. When a node receives a DIO message, it determines its network rank, which must be higher than all its parents’ rank, and then continues sending DIO messages using the trickle timer. As a result, DODAG begins at the root and eventually extends to encompass the whole network. This paper is the first review to study intrusion detection systems in the RPL protocol based on machine learning (ML) techniques to the best of our knowledge. The complexity of the new attack models identified for RPL and the efficiency of ML in intelligent and collaborative threats detection, and the issues of deploying ML in challenging LLN environments underscore the importance of research in this area. The analysis is done using research sources of “Google Scholar,” “Crossref,” “Scopus,” and “Web of Science” resources. The evaluations are assessed for studies from 2016 to 2021. The results are illustrated with tables and figures.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3