Microstructure and Texture of an Aluminum Plate Produced by Multipass Cold Rolling and Graded Annealing Process

Author:

Wang YunleiORCID,Yang Fangzhou,Ren Liping,Liu Qi,Cao Yu,Huang Guangjie

Abstract

In order to explore the microstructure, texture, individual performance, and grain size characteristic evolution law during the process of multipass cold rolling, graded annealing process, the experimental design, research approach, and methodology were investigated using the equipment of optical microscope (OM), X-ray diffraction (XRD), electron backscattered diffraction (EBSD), and transmission electron microscope (TEM). The results show that a low interannealing temperature could strengthen the cubic texture after finished product annealing, and a high volume fraction of cubic texture components was subsequently obtained. In view of the nucleation advantage of cubic texture, the Cube-{001}<100> texture formation after annealing was promoted by the cold-rolled texture of Cu-{112}<111> and S-{123}<634>, which mainly depended on the decomposition of Cu and S textures, finally, they were consumed and transformed from Cu and S textures into a cubic texture. In addition, the dislocation configuration and corrosion pit density were clearly visible and distinctive in the observation space of aluminum foil.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3