Taylor Impact Tests with Copper Cylinders: Experiments, Microstructural Analysis and 3D SPH Modeling with Dislocation Plasticity and MD-Informed Artificial Neural Network as Equation of State

Author:

Rodionov Egor S.ORCID,Lupanov Victor G.,Gracheva Natalya A.ORCID,Mayer Polina N.,Mayer Alexander E.ORCID

Abstract

Taylor impact tests involving the collision of a cylindrical sample with an anvil are widely used to study the dynamic properties of materials and to test numerical methods. We apply a combined experimental-numerical approach to study the dynamic plasticity of cold-rolled oxygen-free high thermal conductivity OFHC copper. In the experimental part, impact velocities up to 113.6 m/s provide a strain up to 0.3 and strain rates up to 1.7 × 104 s−1 at the edge of the sample. Microstructural analysis allows us to find out pore-like structures with a size of about 15–30 µm and significant refinement of the grain structure in the deformed parts of the sample. In terms of modeling, the dislocation plasticity model, which was previously tested for the problem of a shock wave upon impact of a plate, is implemented in the 3D case using the numerical scheme of smoothed particle hydrodynamics (SPH). The model includes an equation of state implemented in the form of an artificial neural network (ANN) and trained according to molecular dynamics (MD) simulations of uniform isothermal stretching/compression of representative volumes of copper. The dislocation friction coefficient is taken from previous MD simulations. These two efforts are aimed at building a fully MD-based material model. Comparison of the final shape of the projectile, the reduction of the sample length and increase in the diameter of the impacted edge of the sample confirm the applicability of the developed model and allow us to optimize the model parameters for the case of cold-rolled OFHC copper.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3