Accuracy of Image-Based Automated Diagnosis in the Identification and Classification of Acute Burn Injuries. A Systematic Review

Author:

Boissin ConstanceORCID,Laflamme LucieORCID

Abstract

Although they are a common type of injury worldwide, burns are challenging to diagnose, not least by untrained point-of-care clinicians. Given their visual nature, developments in artificial intelligence (AI) have sparked growing interest in the automated diagnosis of burns. This review aims to appraise the state of evidence thus far, with a focus on the identification and severity classification of acute burns. Three publicly available electronic databases were searched to identify peer-reviewed studies on the automated diagnosis of acute burns, published in English since 2005. From the 20 identified, three were excluded on the grounds that they concerned animals, older burns or lacked peer review. The remaining 17 studies, from nine different countries, were classified into three AI generations, considering the type of algorithms developed and the images used. Whereas the algorithms for burn identification have not gained much in accuracy across generations, those for severity classification improved substantially (from 66.2% to 96.4%), not least in the latest generation (n = 8). Those eight studies were further assessed for methodological bias and results applicability, using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. This highlighted the feasibility nature of the studies and their detrimental dependence on online databases of poorly documented images, at the expense of a substantial risk for patient selection and limited applicability in the clinical setting. In moving past the pilot stage, future development work would benefit from greater input from clinicians, who could contribute essential point-of-care knowledge and perspectives.

Publisher

MDPI AG

Reference45 articles.

1. Global Health Estimates 2016: Estimated Deaths by Cause and Region, 2000 and 2016,2017

2. Indeterminate-Depth Burn Injury—Exploring the Uncertainty

3. Pre-Hospital, Fluid and Early Management, Burn Wound Evaluation;Sjöberg,2012

4. Digital imaging in remote diagnosis of burns

5. Telemedicine for acute burn treatment: the time has come

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3