Development and evaluation of deep learning algorithms for assessment of acute burns and the need for surgery

Author:

Boissin Constance,Laflamme Lucie,Fransén Jian,Lundin Mikael,Huss Fredrik,Wallis Lee,Allorto Nikki,Lundin Johan

Abstract

AbstractAssessment of burn extent and depth are critical and require very specialized diagnosis. Automated image-based algorithms could assist in performing wound detection and classification. We aimed to develop two deep-learning algorithms that respectively identify burns, and classify whether they require surgery. An additional aim assessed the performances in different Fitzpatrick skin types. Annotated burn (n = 1105) and background (n = 536) images were collected. Using a commercially available platform for deep learning algorithms, two models were trained and validated on 70% of the images and tested on the remaining 30%. Accuracy was measured for each image using the percentage of wound area correctly identified and F1 scores for the wound identifier; and area under the receiver operating characteristic (AUC) curve, sensitivity, and specificity for the wound classifier. The wound identifier algorithm detected an average of 87.2% of the wound areas accurately in the test set. For the wound classifier algorithm, the AUC was 0.885. The wound identifier algorithm was more accurate in patients with darker skin types; the wound classifier was more accurate in patients with lighter skin types. To conclude, image-based algorithms can support the assessment of acute burns with relatively good accuracy although larger and different datasets are needed.

Funder

Vetenskapsrådet

Karolinska Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3