Molecular Dynamics Study on Water Flow Behaviour inside Planar Nanochannel Using Different Temperature Control Strategies

Author:

Skarbalius GediminasORCID,Džiugys AlgisORCID,Misiulis EdgarasORCID,Navakas RobertasORCID,Vilkinis Paulius,Šereika JustasORCID,Pedišius Nerijus

Abstract

In the present paper, molecular dynamics simulations were performed to study the influence of two temperature control strategies on water flow behaviour inside planar nanochannel. In the simulations, the flow was induced by the force acting on each water molecule in the channel. Two temperature control strategies were considered: (a) frozen wall simulations, in which the dynamics of confining wall atoms was not solved and the thermostat was applied to the water, and (b) dynamic wall simulations, in which the dynamics of confining wall atoms was solved, and the thermostat was applied to walls while water was simulated in the microcanonical ensemble. The simulation results show that the considered temperature control strategies has no effect on the shape of the water flow profile, and flow behaviour in the channel is well described by the Navier–Stokes equation solution with added slip velocity. Meanwhile, the slip velocity occurring at the boundaries of the channel is linearly dependent on the magnitude of the flow inducing force in both frozen wall and dynamic wall simulations. However, the slip velocity is considerably greater in simulations when the wall dynamics are solved in contrast to the frozen wall simulations.

Funder

Lietuvos Mokslo Taryba

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3